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Abstract

In the present study, an effective inclusion model for effective elastic moduli of heterogeneous materials is proposed
to analyze the problem of an infinite matrix containing an ellipsoidal RVE. It is assumed that the strain energy changes
of the infinite matrix due to embedding the RVE and its effective inclusion into the matrix are identical. A system of
equations for effective moduli is then formulated using the new energy balance equation that interrelate effective moduli
to a problem of an infinite matrix containing N inhomogeneities in an ellipsoidal sub-region. A generalized non-
interacting solution derived based on the present formulation coincides with the estimates of the Hashin—Shtrikman
type obtained by Ponte Casta n eda and Willis [J. Mech. Phys. Solids 43 (1995) 1919]. The effect of the shapes of RVEs
on the approximate solution is also discussed in detail. As further application of the present formulation, the numerical
models for the effective moduli of solids with cracks and heterogeneous materials with spherical inhomogeneities are
proposed, which account for the interactions among many cracks or spherical inhomogeneities. The numerical results
are then compared with the existing micromechanics models and experimental data. © 2001 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Many approximate models and effective medium theories for effective elastic moduli of heterogeneous
materials with randomly dispersed inhomogeneities have been proposed (see reviews by Hashin, 1983;
Christensen, 1990; Kachanov, 1992; Nemat-Nasser and Hori, 1993). The homogenization procedures used
in these micromechanics models usually simplify the complex geometry of the original heterogeneous
materials into the problem of a homogeneous media with only one inhomogeneity.

Zimmerman (1991) presented a closed-form solution for the differential scheme equations for the ef-
fective elastic moduli of materials containing spherical pores or rigid spheres. In addition, he showed that
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the experimental data obtained by Walsh et al. (1965) and Hasselman and Fulrath (1965) lie between the
predictions of the Mori-Tanaka solution and the differential method and somewhat closer to those of the
latter. The experimental data of porous materials obtained by Walsh et al. (1965) and Ishai and Cohen
(1967) were compared with the theoretical predictions by Cleary et al. (1980) and Weng (1984). Again, these
data lie between the predictions of the Mori-Tanaka solution and the differential method. Christensen
(1990) tested the effective moduli theories using the measurement of the viscosity of Newtonian fluids
containing rigid spheres. However, as pointed out by Zimmerman (1991), it is problematic to use the
measurements of relative viscosity of a suspension of rigid spheres in a Newtonian fluid since the dispersed
spheres tend to migrate away from walls, creating an inhomogeneous suspension when the viscosity of a
suspension is measured.

Numerical methods have been used to predict the overall mechanical properties of heterogeneous ma-
terials (Kachanov, 1987, 1992; Rodin and Hwang, 1991; Day et al., 1992; Huang et al., 1996; Yi et al., 1995;
Shen and Yi, 2000a). For two-dimensional (2-D) problem of cracked solids, Kachanov (1987) presented a
simple method to analyze the problem of an infinite matrix with a finite number of cracks, and derived
explicit expressions for solids with cracks that can consider the crack arrays within an elementary volume.
Kachanov (1992) also gave the numerical calculations for 2-D problem of solids with randomly located
cracks. His results are slightly larger than the predictions of the conventional non-interaction solution. A
similar calculation for the case of anisotropic matrix was also given by Mauge and Kachanov (1994).
Huang et al. (1994) pointed out that the solutions by Kachanov (1987, 1992) neglected the interaction
between cracks outside and inside the square elementary volume, and proposed an approximate scheme to
account for the interaction by adding another layer of cracks outside the square elementary volume.
Furthermore, Huang et al. (1996) presented the boundary element method in conjunction with a unit cell
model for 2-D case of solids with cracks to account for the interaction. Twenty five cracks are involved in
their unit cell. Their numerical results generally lie between the predictions by the conventional non-
interaction solution and the differential method. The recent work by Zhan et al. (1999) also considers
the interaction based on a superposition scheme and series expansions of the complex potentials. A com-
plicated calculation of a finite plate is involved in their method. Their numerical results are consistent with
those of Huang et al. (1996). It is noted that it is difficult to extend the methods proposed by Huang et al.
(1996) or Zhan et al. (1999) to three-dimensional (3-D) cases with any kind of inhomogeneities.

Rodin and Hwang (1991) extended Kachanov’s method to the problem of an infinite matrix containing a
finite number of spherical inhomogeneities and calculated the effective shear moduli of an impressible
matrix with randomly dispersed rigid spheres. Their calculations are also consistent with the conventional
non-interaction solution. Meanwhile, they explained that their calculations neglected the interactions be-
tween the inhomogeneities and the external surface of the matrix.

Essentially, the interactions pointed out by Rodin and Hwang (1991) and Huang et al. (1994) are
identical. The problem involved in the calculations for effective moduli by Rodin and Hwang (1991) and
Kachanov (1987, 1992) is an inconsistency between the conventional energy balance equation and the
system of controlling equations for the problem of an infinite matrix containing N inhomogeneities. It is
known that the conventional energy balance equation for effective moduli requires the solution of a finite
block of heterogeneous material with N inhomogeneities or an infinite heterogeneous material with an
infinite number of inhomogeneities. However, the problems that were calculated by Kachanov (1992) and
Rodin and Hwang (1991) are an infinite intact matrix with a square block of heterogeneous material that
contains a finite number of cracks or spheres.

In our recent works (Shen and Yi, 2000a,b), a new energy balance equation for effective moduli of solids
with cracks has been proposed that just requires the solution of the problem of an infinite matrix containing
N cracks in a spherical (3-D) or circular (2-D) sub-region. The inconsistency mentioned previously has been
rigorously and analytically overcome. In other words, the interaction pointed out by Huang et al. (1994)
has been rigorously and analytically accounted for. The numerical results for 2-D solids with randomly
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located cracks (Shen and Yi, 2000a) also lie between the predictions by the conventional non-interaction
solution and differential method. Moreover, it is noted that this method is very simple and identically
suitable for 2-D or 3-D problems with any kind of inhomogeneities.

Ju and Chen (1994a,b) presented the “non-interacting” solution and the second-order particle interac-
tion model by analyzing an infinite matrix containing an ellipsoidal RVE. Hori and Nemat-Nasser (1993)
presented a very general analytical solution by analyzing an infinite matrix containing a double inclusion.
Nemat-Nasser and Hori (1995) also analyzed the geometry where the properties of the infinite matrix can
be arbitrary. Ponte Casta n eda and Willis (1995) derived estimates of the Hashin—Shtrikman type. The
shape of RVE was involved in these models. However, it was not explained clearly.

In the present study, an effective inclusion model for effective moduli of heterogeneous materials is
proposed to analyze the problem of an infinite matrix containing an ellipsoidal RVE. Therefore, a new
energy balance equation for heterogeneous materials with any kind of inhomogeneities is developed.
Moreover, a generalized non-interaction solution is derived, which coincides with the estimates of the
Hashin—Shtrikman type obtained by Ponte Casta n eda and Willis (1995). On the basis of the present
formulation, the effect of shape of RVEs on effective moduli in the existing solutions can be clarified.
Furthermore, numerical models for cracked solids or composites containing spherical inhomogeneities are
also obtained, which account for the mutual positions of many cracks or spherical inhomogeneities. Nu-
merical calculations for 2-D solids with parallel cracks and two-phase composites with spherical pores or
rigid spheres are carried out.

2. An effective inclusion model

Fig. 1(a) and (b) shows an ellipsoidal RVE of a heterogeneous material and the effective inclusion of the
RVE. The elastic moduli and geometry (shape and size) of the inclusion are the same as the effective moduli
of the heterogeneous material and the RVE, respectively. As shown in Fig. 1(c) and (d), Afmicro and Afegrective
denote the strain energy changes of an infinite matrix, which is subjected to far-field stress oy and has the
same elastic moduli as the matrix of the RVE, due to embedding the heterogeneous RVE and the ho-
mogeneous effective inclusion into the infinite matrix, respectively. It is assumed

Afeffective = Afmicro (1 )

Afmicro can be micromechanically determined in terms of the “microstructures” of the N inhomogeneities
contained in the ellipsoidal sub-region of the infinite matrix, while Afirecive can be interrelated to the ef-
fective moduli of the RVE (Eshelby, 1957),

-1
Afefteciive = _%V‘TO 1 [Co: (C—Cy) 1 Co+Co:Sy| 0 (2)

where V' is the volume of the effective inclusion or the RVE (which also denotes the corresponding sub-
region occupied by the effective inclusion or the RVE); Sy is Eshelby’s tensor associated with the material
properties of the matrix and the shape of the RVE, and ¢° accompanied by £ = C, : ¢° is the uniform far-
field stress tensor; Cy, and C are the elastic stiffness tensors of the matrix and the effective medium of the
heterogeneous material, respectively. If the matrix is isotropic, the explicit expression of Eshelby’s tensor S
is available (Eshelby, 1957, 1959; Mura, 1982).

Egs. (2) and (1) lead to an energy balance equation

-1
7%V00 : (C - CO)71 1 Co + SV} : C(;] 6 = Afmicro (3)
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Af effective

© (d)

Fig. 1. Schematic diagram of the effective-inclusion model: (a) an RVE of the heterogeneous material; (b) the effective inclusion; (c) the
strain energy change Afyicro due to embedding the RVE into the infinite matrix; (d) the strain energy change Afeecive due to embedding
the effective inclusion into the infinite matrix.

The energy balance equation interrelates the effective moduli of heterogeneous materials to the strain en-
ergy change Afnio Which retains the need to be micromechanically determined in terms of the “micro-
structural” quantities, say average strains of the N inhomogeneities contained in the sub-region.

Let & and & denote the average strain and the average eigenstrain of the ith inhomogeneity over the
region V; occupied by it. The strain energy change Afnio can then be expressed as (see Mura, 1982)

1 N
Afmicro = E VO_O : Zd):(l - C(;l : Cl) TE (43)
i=1
or
1 N
_ 0. —%
Af‘micro - E Vo : ;(ﬁi% <4b)

where ¢; with ¢, = V;/V and C; are the volume fraction and the elastic stiffness tensor of the ith inho-
mogeneity, respectively. In accordance with Eshelby (1957), ¢ is defined by
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C(+€(x)=Co: (" +&(x)—¢(x), forxinV¥ (i=1,2,...N) (5)

¢(x) = /Vs(x —x') (X)) dx (6)

where s(x — X') is a fourth-order tensor-valued function of x — x/, defined by Green’s function of the infinite
matrix, ¢ and ¢ are the far-field strain tensor and the perturbation strain tensor, ¢*(x) = & (x), for x in V;
and otherwise ¢*(x) = 0. By averaging Eq. (5) over ¥}, the average eigenstrain & of the ith inhomogeneity
can be related to its average strain

g=(01-C':C):5 ()
Thus Egs. (4a) and (4b) are consistent.

From Egs. (3) and (4a) or Eq. (4b), the energy balance equations which interrelate effective moduli to the
“microstructural” quantities, & or € are obtained as

-1 N
O [(C-C) S| G e = =0 D e (-G C) (8a)
i=1
or
—1 N
a {(C - Co)_1 :Co+ SV} : Cal co = —a: Z(ﬁiél’.‘ (8b)
i=1

Approximate analytical models for effective moduli can be obtained using approximate schemes to get the
average strain g; of the ith inhomogeneity. The system of Eq. (8b) with Egs. (5) and (6) can give accurate
results of effective moduli which can be used to verify the validity of approximate analytical models by
using an accurate method to solve the integral Eqs. (5) and (6) for ;.

3. Non-interacting approximation
3.1. A generalized non-interacting solution

If the interactions among the N inhomogeneities are completely neglected, & can be found by solving the
problem of the infinite matrix containing the ith isolated inhomogeneity. Using Eshelby’s method (Eshelby,
1957), &; is obtained as

_ -1
a:_a—cyzq)’{«;—gy%(b+&};c;;w )

where S; is Eshelby’s tensor associated with the material properties of the matrix and the shape of the ith
inhomogeneity. Substituting Eq. (9) into Eq. (8a) and considering the arbitrariness of the far-field stresses
yield

“C-—C@‘V+syzcgﬂ71=:§é¢,ﬂci—(x)*-+si:0517] (10)

Consequently, an approximate solution for effective elastic stiffness tensor C can be extracted as

1 N
: [Z‘ﬁiTi
i=1

N
I—Z(i),—TiZSV:C(;I

i=1

C=C+
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with

T, = [(C,- G+ S Cg‘r (12)

For distinction from the conventional non-interaction solution, the present solution is called a generalized
non-interaction solution. It is known that the interrelation between the P tensor used by Ponte Casta n eda
and Willis (1995) and Eshelby’s tensor Sis P =S : C;, ' It can be seen that the generalized non-interacting
solution, i.e., Eq. (11) coincides with the estimates of the Hashin—Shtrikman type obtained by Ponte Casta
n eda and Willis (1995).

Some special cases of the solution are as follows:

If all inhomogeneities are unidirectionally aligned and similarly shaped, Eq. (11) becomes

C:CO:[IJFB:(I—SV:B)’]] (13)

with
N -1
B=Y [s+(C-C)" (14)
i=1
where s is the common Eshelby’s tensor of the N inhomogeneities with s = S;.

If the shape and orientation of the RVE are identical to those of the inhomogeneities, i.e. Sy =s, Eq.
(13) recovers the “non-interacting” solution obtained by Ju and Chen (1994a). They also described the
connection between their model and the Mori-Tanaka method. Further, if all inhomogeneities have
identical moduli tensor C;, Eq. (13) becomes

C:CO:{I+¢1 [(C, —Cy)! :co+(1—¢1)s}l} (15)

which is identical to the estimates based on the Mori-Tanaka method (Mori and Tanaka, 1973) for two-
phase composites. The tensors in Eq. (15) are coupled. Tandon and Weng (1984) and Zhao et al. (1989)
presented the individual components of the effective moduli.

If all inhomogeneities have identical moduli C; in Eq. (13), it becomes

C:CO:{I+¢, [(CI_CO)—I ;C0+s—¢ISV]_1} (16)

where ¢, is the total volume fraction of inhomogeneities (with possibly different sizes). Eq. (16) is consistent
with Eq. (3.25) of Ponte Casta n eda and Willis (1995). Further, if s and Sy in Eq. (16) are corresponding to
spheroidal inhomogeneities and the spheroidal RVE that has the same axial direction as that of inhomo-
geneities but may be different in the aspect ratio, the effective moduli C predicted by Eq. (16) is transversely
isotropic. For the special cases that inhomogeneities are rigid disks or penny shaped cracks, only the two
components of C are non-trivial, which are in-plane bulk and transverse shear moduli for the case of rigid
discs, and longitudinal Young’s modulus and longitudinal shear modulus for the case of cracks, respec-
tively. Ponte Casta n eda and Willis (1995) explicitly gave the results for the special cases of spherical and
“flat” distributions of rigid disks or cracks. Note that the spherical and “flat”” distributions of rigid disks or
cracks are corresponding to the spherical RVE and “flat” RVE of the present model.

3.2. Problem about the shape of RVE
Effective moduli should be independent of the shape of RVE. However, it can be seen that the gener-

alized non-interacting solution is dependent of the shape of the RVE. In order to discuss the problem, a
parameter for the interactions among the N inhomogeneities is introduced. Let Ag; denote the neglected
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part of the average strain of the ith inhomogeneity as assuming the non-interacting approximation to solve
the & (see Eq. (9)). In terms of the linear elasticity, it can be supposed that there exists an as-yet-unknown
interaction tensor F;, which linearly interrelates Ag; to the far-field stress ¢° as follows

A =(1-C)':C) " F:Cl o (17)

It is noted that F; is associated with the shape of the sub-region ¥ or the RVE. After considering the in-
teractions among the N inhomogeneities, the average strain g; of the ith inhomogeneity should be the sum
of Egs. (9) and (17)

=—(I-C':C)" (T, +F):C;': o (18)

Thus, by substituting Eq. (18) into Eq. (8a), the expression for effective elastic stiffness tensor C which has
accounted for the as-yet-unknown interactions among inhomogeneities is obtained as

: [Z@(Ti +F)

Physically, the effective moduli C must be independent of the shape of the RVE. If F; are exactly evaluated,
the dependency of F; on the shape of the RVE must cancel with that of S;. However, as it is extremely
difficult to solve the interactions among N randomly distributed inhomogeneities exactly, approximate
estimates have been used. The dependency of F; on the shape of the RVE may not cancel with that of Sy
completely. Consequently, the different shapes of RVE lead to the different approximate solutions of ef-
fective moduli C. For example, the dependence of S; on the shape of the RVE remains in the generalized
non-interacting solution since F; are neglected. As far as the generalized non-interacting solution is con-
cerned, some basic requirements can be deliberately made for the choice of the shape of the RVE to have
physically reasonable effective moduli C. For isotropic problems with randomly distributed inhomogene-
ities, the Sy in the generalized non-interacting solution must be isotropic to acquire isotropic effective
moduli C, which requires that the shape of RVE should be spherical.

N
C=Co+ [I-) ¢(T,+F):Sy:C'

i=1

(19)

4. Solids with parallel tunnel cracks

For crack problems, it is convenient to rewrite the present model using displacement discontinuities
across crack faces even though it can also be analyzed by taking cracks as the limited case of ellipsoidal
voids. In the following, the solids with parallel tunnel cracks are analyzed.

For the plane strain problem of solids with parallel tunnel cracks (in x;—x, plane and cracks are normal
to x; axis), the non-trivial components of the effective moduli are the effective plane strain modulus £, in the
x; direction and the in-plane shear modulus Gj,.

By taking the corresponding far-field boundary stresses, i.e. uniaxial tension ¢% with ¢%,, = ¢% and other
‘751/; =0, and in-plane pure shear o, with of,;, = a(,, = o, and other o}, = 0, respectively, and consid-
ering circular cylinder RVE, the two independent equations for effective moduli can be obtained by

1 E, — E, 1 1, & 1/
—_— = — — . b ,'b,' b,’ i dll 20
2E, Ey + &o(E — Ey) (002,4“5 Z: 3 J, (nibi =+ bimy) (20)

1 Gu-G zN:/nb—an)dl (21)
2Gy Go + (G — Go) ZAG 1 l o

where the strain energy change expressed in the right side of Eq. (8a) has been expressed in terms of the
unknown displacement discontinuities b; of the N cracks across the crack faces /;; n; is an unit normal to the
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Fig. 2. An elliptic sample with 200 parallel cracks (p = 0.3 and aspect ratio a = 0.5).

ith crack face; and /; denotes the region of the ith carck; E, and v, are the Young’s modulus and Poisson’s
ratio of the intact solids; and &; = 5/8, g = (3 — 4vg)/[4(1 — vp)].

Furthermore, by considering elliptic RVEs with the same axial direction as the normal direction of
cracks, an independent equation for the in-plane shear modulus can be found as

1 G, — Gy 11, i /
— = — —0x - n,-bi + bin,- dll 22
2Gy Go + 28y1212(G1a — Go) (O_%)Z A€ ;2 1[( ) ( )

where Sy212 is the component of Eshelby’s tensor corresponding to the elliptic cylinder RVE, which is
associated with the aspect ratio a of the elliptic cross-section of the RVE (see Fig. 2). Note that for the
special case of circular RVE, 2Sy1212 = #4.

As n; is constant for each crack, f[l_ (m;b; + bn;)dl; = 21;(n;(b;) + (b;)n;) with (b)) = 1/2, f[i b;d/;.
Therefore, the average displacement discontinuity across each crack face is required in order to evaluate
effective moduli of solids with tunnel cracks.

4.1. Generalized non-interacting solution

Based on the non-interacting approximation, the strain energy changes in the left sides of Egs. (20)—(22)
can be given as (Kachanov, 1994)

1 any | )

17205 [ b bm)dl = (@B (23)
i=1 i

1, K1 02/ s

100725 [ (b bim)dly = (00)'(n/E o (24)
i=1 i

where p denotes the crack density with p = (1/4)3_" /> and 4 is the area of the circular or elliptic RVE.
Substituting Eq. (23) into Eq. (20) and Eq. (24) into Egs. (21) and (22) leads to

o 2np
(1 —vo)p
Gp/Go=1-— 26
2/ G0 = = T3l — vo)p (26)
n(l—v
Glz/G() = 1 ( 0)[) (27)

14 2Spn(l — vo)p
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Eq. (27) can give different evaluations of effective in-plane shear modulus for different aspect ratios of
elliptical RVEs. Note that, for 3-D case, i.e., solids containing parallel penny-shaped cracks, similar results
were presented by Ponte Casta n eda and Willis (1995).

4.2. Numerical calculation

The unknown average displacement discontinuities (b;) are numerically calculated using Kachanov’s
method (Kachanov, 1987) to solve the N crack interaction problem. Kachanov (1987) presented a system of
N vectorial linear algebraic equations for the average traction (t;) over the ith crack and a simple pro-
portionality relation between (b;) and (t;),

(t) =t + Ay - () (28)
(b, =’;—2‘<t,—> (29)

where the tensorial element A, gives the average traction vector generated along the kth crack line by the
ith crack loaded by a uniform traction of arbitrary direction and unit intensity.
As a result, the present energy balance equations (20)—(22) become

1 E, —E, 1 1 5 Ky
= — —F 0 . [l n; ti + (t;)n; 30
2E6 E(,)JréE(E—Eé) (O'%)ZAEO E ;:( < > < > ) ( )
1 G12—G0 1 I 0 ul )
= — 3 7 06 DL (m(t) + (t)n) (31)
i=1

— c
2Gy Gy + ng(Gr2 — Go) (02)* AE;,

1 G — Gy 1, &,
G == —= 06 ) Li(n(t) + (t)n; 32
2G0 GO + 2SV1212(G12 _ GO) (0‘%)2 AE6 G ; 1( < > < > ) ( )

Egs. (30), (31) with (28) constitute a numerical model for effective elastic moduli. Eq. (32) with Eq. (28) can
be used to calculate effective in-plane shear modulus for various elliptical RVEs. For each realization of the
random distributions of NV parallel microcracks in a circular or elliptic sub-region, effective elastic moduli
are computed. Then, the desired effective moduli can be evaluated as the mean values of several realizations.

A standard random number generator which randomly and successively generates the center of each
crack is used to generate 200 cracks with the same length in an elliptic region to form samples corre-
sponding to each crack density. Ten samples of the crack distributions corresponding to each crack density
and each elliptical region are generated. Following Kachanov (1992), the spacing between cracks is kept no
smaller than 0.02 of the crack length. Fig. 2 shows one of the samples with aspect ratio being 0.5. For the
solids with parallel tunnel cracks, the generalized non-interacting solutions for effective Gy, are evaluated
for various aspect ratio a of elliptic RVE and compared with the numerical calculations. For the elliptical
RVE with the aspect ratios being 0.1, 0.5 and 1, the effective in-plane shear modulus Gy, with vy = 0.3 are
calculated and plotted in Fig. 3.

The effective moduli £, and Gy, with the crack densities p = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6, respectively,
are also evaluated and illustrated in Figs. 4 and 5 together with some existing solutions including the
conventional non-interacting solution, self-consistent method (Hoenig, 1979; Hu and Huang, 1993) and
differential method (Zimmerman, 1985; Hashin, 1988). The present numerical results lie between the
conventional non-interacting solution and the differential method.
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Fig. 3. Normalized effective in-plane shear modulus of solids with parallel tunnel cracks (a = aspect ratio of the elliptic RVE).
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Fig. 4. Normalized effective plane strain modulus normal to the crack direction of solids with parallel tunnel cracks.

5. Two-phase composites with randomly dispersed spherical inhomogeneities

5.1. Generalized non-interacting solution

For isotropic effective moduli C, by taking far-field stress ¢° as hydrostatic tension gy with oy, = "9
and shear stresses oy, with ¢, = a(,,; = 1 and other a,; = 0, respectively, and considering the spherical
RVE, two independent equations of Eq. (8b) for effective bulk and shear moduli can be obtained as
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Fig. 5. Normalized effective in-plane shear modulus of solids with parallel tunnel cracks.

1 K — K, 1 o e,
_ = — : & 33
Koy Ko + ¢(K — Kp) (00)2 Ok ;¢,8, (33)

1 G-G, 1, N
_ = — . er 4
Go Go+1(G—Go) ()¢ ;wl (34)

where & = (1 4+ v)/[3(1 — vo)], n = (8 — 10vg)/[15(1 — vp)], Ko and Gy, denote bulk and shear moduli of the

matrix of the composite, and K and G denote those of the effective medium. Using the non-interacting

approximation, Egs. (33) and (34) become
K — K, K, — K,

Ko+ (K —Ko) Ao E(Ky — Ko) (33)

G*Go _¢ GI*GO
Go+E(G—Gy) TGy E(G, — Gy)

where ¢, K; and G denote the volume fraction, bulk and shear moduli of the spherical inhomogeneities.
Note that the solution expressed in Egs. (35) and (36) can also be obtained from the generalized non-
interacting solution, i.e., Eq. (11).

Subsequently, K and G can be extracted from Egs. (35) and (36) as

(36)

_ ¢ (K — Ko)

KKO[1+K0+§(1—¢1)(K1—K0)} 37)
_ $,(G — Go)

6= 6|1+ Gl g6 (%)

If the matrix is the softer (or harder) phase, the above K and G are identical to the lower (or upper) bounds
derived by Hashin and Shtrikman (1963). These solutions are also coincided with those evaluated by the
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Mori-Tanaka solution (see Weng, 1984 and 1990), the double-inclusion model by Hori and Nemat-Nasser
(1993), the “non-interacting” solution by Ju and Chen (1994a) and the estimate of Hashin—Shtrikman type
by Ponte Casta n eda and Willis (1995).

It is interesting to see from Egs. (35) and (36) that a symmetric structure is implied in these solutions.

5.2. Numerical calculation

The accuracy of effective elastic moduli depends on how precisely to solve the integral Egs. (5) and (6) for
¢’ under the corresponding far-field stresses. Rodin and Hwang (1991) converted approximately the integral
equations (5) and (6) into the system of linear algebraic equations using Kachanov’s idea (Kachanov, 1987).
In this study, the system of linear algebraic equations is rederived using an alternative approach.

Substituting Eq. (6) into Eq. (5) leads to

&

"+ Z /V s(x —x') : (5 + Agj(x')) dx' —|—/ s(x —x') : &/ (X) dx’]

J#i Vi

:C():

e+ Z/ s(x —x') : (5 + As;f(x’))dx/ + / s(x —x) g (x)dx — .gl*(x)] in 7 (39)
j#i Y Vi

where A.s;f (x') is the deviation of the eigenstrain sj(x’) from its volume average value over V}, E}f, that is,
Agi(X') = &j(X) — % (40)

By taking the volume average of Eq. (39) over V;, it becomes

Ci<gO+Zﬁff;g;f+SO :.g;f> :C0<30+Zﬁ/i:g;+soisj—8j> +88 in ¥ (41)

i #i
with
—x 1 / * / =% /
68[:(C0—C,«):ZV/ /s(x—x):(sj(x)—sj)dxdx (42)
g T
where D’ is the volume average of D/ over ¥, and expressed as (Rodin and Hwang, 1991),
D D (3o — xp) + 2 pvov( 43
= D(x0 =) + 30(1 —v) X = X[ ) | vy *3)

where a;, a; and X, x;, are the radii and centers of the ith and jth inhomogeneities, respectively; and the
following results from Eshelby (1957,1959) have been used (see Rodin and Hwang, 1991):

N So if j=i
/st(x—x)dx {Dﬁ(X—X/) it A (44)

Tensor S is the well-known Eshelby’s tensor associated with spherical inclusion. Tensor D' is expressed in
terms of potentials ¢ and y as (Eshelby, 1959)

; 1
Dr/nnpq = m {lpapqmn - 2V5pq¢amn - (1 - V) [5mq¢mp + 5nq¢7mp + 5mp¢7nq + 5np¢7mq } } (45)

with
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dnay 1 g gt A ]
¢ = 3 x—X| and = 3 x|+ 15 |x—x|

By neglecting 8¢; in Eq. (41), a system of 6/ linear algebraic equations for the eigenstrains &, are

ci<g°+25” 18+ Sy : zj) = c0<g° +Y D' g +S 7 _§;> in ¥ (i=1,2,...N) (47)
J#i J#i

It should be noted that Eq. (47) is consistent with that of Rodin and Hwang (1991). Since
ij (e;(x') —&;)dx' =0, 3z in Eq. (42) is assumed to be small and it is neglected in the present study. Be-
sides, since the microscopic geometry of the spherical inhomogeneities can be unambiguously specified, the
validity of the numerical method can be tested by comparing with the results which is obtained with more
involved numerical techniques such as the finite element method. Rodin and Hwang (1991) compared the
potential energy changes due to imbedding two equal voids into an infinite solid subjected to uniaxial and
triaxial far-field tensions. They concluded that the results predicted by the numerical method and the FEM,
respectively, are very agreeable each other even for the distance of the two voids are small to 0.1% of their
radius. Therefore, the numerical methods may produce relatively accurate solutions for the unknown &
associated with the problem of an infinite matrix containing N spherical inhomogeneities.

Egs. (33) and (34) in conjunction with Eq. (47) form a numerical model to evaluate the effective bulk and
shear moduli of composites with randomly distributed spherical inhomogeneities. The resulting effective
moduli can be taken as the mean value of several realizations of N inhomogeneities. If the number of the
inhomogeneities is taken large enough, it can be anticipated that the scatters of the results predicted by
different realizations will be small.

For the cases of spherical pores and rigid spheres, Eq. (47) becomes

S+Y D E S E -5 =0 in ¥ (i=12,..N) (48)
J#
and
S+ D E S E =0 inV(i=1,2,...N) (49)
J#i

The standard random number generator was used to generate a realization of random distributions of N
spherical inhomogeneities. Each spherical inhomogeneity is randomly and successively put into the
spherical sub-region of an infinite matrix corresponding to a volume fraction. However, as pointed out by
Rodin and Hwang (1991), when the volume fraction is larger than 0.3, it is extremely difficult to generate a
random distribution of spherical inhomogeneities with a common radius. Actually, when the volume
fraction is larger than 0.3, the spheres formerly generated have inappropriately occupied some locations so
that the latter spherical inhomogeneities with the common size can not squeeze into the spaces between the
former spherical inhomogeneities. Following Rodin and Hwang (1991), 108 small spherical inhomogene-
ities with radius being 0.6 and 72 large spherical inhomogeneities with radius being 1 are randomly gen-
erated in a spherical region with a radius corresponding to the volume fraction 0.4. However, it is noted
that Rodin and Hwang (1991) randomly generated these spheres in a cubic region. Besides, 160 spherical
inhomogeneities with the common size are randomly generated in spherical regions corresponding to
volume fraction 0.1, 0.2 and 0.3. For each volume fraction, 10 samples of the random distributions are
produced and calculated.

For verification studies, effective moduli of a sintered glass containing spherical pores (v = 0.193) and
epoxy containing pores (vo = 0.4) are calculated by the present method and compared with the existing
experimental data (Walsh et al., 1965; Ishai and Cohen, 1967) and analytic solutions (Weng, 1990;
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Fig. 6. Normalized Young’s modulus of porous materials (vo = 0.193).

Zimmerman, 1991; Christensen, 1990). The bulk modulus of the sintered glass containing spherical pores
was obtained experimentally by Walsh et al. (1965), while the Young’s modulus of the epoxy containing
pores was given by Ishai and Cohen (1967). As shown in Figs. 6 and 7, the numerical results are agreeable
with the experimental data by Walsh et al. (1965) and Ishai and Cohen (1967).

For two-phase composites with spherical voids, the Mori-Tanaka solution (Weng, 1990) and the dif-
ferential method (Zimmerman, 1991) are

_ _ 3(l—v0)d)]

K_Ko{l 3(1—Vo)+(1+v0)(1—¢1)} (50)
_ 15(1—v0)¢1

GGO[I_15(1—vo)+(8—10v0)(1—¢1)} (s1)

and

G 3 3(1=5w) (G 3/5

7=it i (5) .
G _ [ 214 v) + (1 — %) (G/Gy)*? 173

G =1-9) < T ) -

The effective shear modulus of composite composed of an incompressible matrix and rigid spheres is also
calculated, which is mathematically analogous to the relative viscosity of Newtonian fluids containing rigid
spheres. For two-phase composites composed of incompressible matrix and rigid spheres, the expressions of
effective shear modulus predicted by the Mori-Tanaka solution (Weng, 1990) and the differential method
(Zimmerman, 1991) reduce to

G/Go=(1+15¢,)/(1 = ¢) (54)
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Fig. 8. Normalized effective shear modulus of composites composed of an incompressible matrix and rigid spheres.

and

G/Go=(1— )"

(55)

As shown in Fig. 8, the numerical results lie between the Mori-Tanaka solution and the different method

but closer to the former.
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6. Conclusion

An effective inclusion model is proposed based on the new energy balance equation. The generalized
non-interacting solution for effective moduli of heterogeneous materials is obtained by solving the problem
of an infinite matrix containing N inhomogeneities in an ellipsoidal sub-region. It is shown that the gen-
eralized non-interacting solution coincides with the estimates of the Hashin—Shtrikman type presented by
Ponte Casta n eda and Willis (1995). The generalized non-interaction solutions completely neglect the
interactions among cracks or spherical inhomogeneities while the numerical results account for the inter-
actions. For the crack problem, it is shown that the numerical results for effective moduli of the plane strain
problem of isotropic solids with parallel tunnel cracks is independent of the shape of RVEs and lie between
the predictions by the conventional non-interaction solution and the differential method. For the two
porous materials, the present numerical results are agreeable with the experimental data obtained by Walsh
et al. (1965) and Ishai and Cohen (1967) for the volume fraction ratio up to 0.4 and lie between the Mori—
Tanaka solution and the different method but closer to the former. The effective shear modulus of the
composite with rigid spheres is also calculated by the present method. The results are closer to the gen-
eralized non-interacting solution or the Mori-Tanaka solution compared with the differential method.

References

Christensen, R.M., 1990. A critical evaluation for a class of micromechanics models. J. Mech. Phys. Solids 38, 379-404.

Cleary, M.P., Chen, I.-W., Lee, S.-M., 1980. Self-consistent techniques of heterogeneous media. J. Engng. Mech. Div. ASCE 106, 861-
887.

Day, A.R., Snyder, K.A., Garboczi, E.J., Thorpe, M.F., 1992. The elastic moduli of a sheet containing circular holes. J. Mech. Phys.
Solids 40, 1031-1051.

Eshelby, J.D., 1957. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. Lond. Ser.
A241, 376-396.

Eshelby, J.D., 1959. The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. Lond. Ser. A252, 561-569.

Hashin, Z., 1983. Analysis of composite materials. J. Appl. Mech. 50, 481-505.

Hashin, Z., 1988. The differential scheme and its application to cracked materials. J. Mech. Phys. Solids 36, 719-734.

Hashin, Z., Shtrikman, S., 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys.
Solids 11, 127-140.

Hasselman, D.P.H., Fulrath, R.M., 1965. Effect of spherical tungsten dispersions on Young’s modulus of a glass. J. Am. Ceram. Soc.
48, 548.

Hoenig, A., 1979. Elastic moduli of a non-randomly cracked body. Int. J. Solids Struc. 15, 137-154.

Hori, M., Nemat-Nasser, S., 1993. Double-inclusion model and overall moduli of multi-phase composites. Mech. Mater. 14, 189-206.

Hu, K.X., Huang, Y., 1993. Estimation of the elastic properties of fractured rock masses. Int. J. Rock Mech. Min. Sci. Geomech. Abs.
30, 381-394.

Huang, Y., Hu, K.X., Chandra, A., 1994. A generalized self-consistent mechanics methods for microcracked solids. J. Mech. Phys.
Solids 42, 1273-1291.

Huang, Y., Chandra, A., Jiang, Z.Q., Wei, X., Hu, K.X., 1996. The numerical calculation of two-dimensional effective moduli for
microcracked solids. Int. J. Solids Struc. 33, 1575-1586.

Ishai, O., Cohen, L.J., 1967. Int. J. Mech. Sci. 9, 539.

Ju, JW., Chen, T.M., 1994a. Micromechanics and effective moduli of elastic composites containing randomly dispersed ellipsoidal
inhomogeneities. Acta Mechanica 103, 103-121.

Ju, J.W., Chen, T.M., 1994b. Effective elastic moduli of two-phase composites containing randomly dispersed spherical
inhomogeneities. Acta Mechanica 103, 123-144.

Kachanov, M., 1987. Elastic solids with many cracks: a simple method of analysis. Int. J. Solids Struc. 23, 23-43.

Kachanov, M., 1992. Effective elastic properties of cracked solids: critical review of some basic concepts. Appl. Mech. Rev. 45, 304
335.

Kachanov, M., 1994. Elastic solids with many cracks and related problems. Adv. Appl. Mech. 30, 259-445.

Mauge, C., Kachanov, M., 1994. Effective elastic properties of an anisotropic material with arbitrarily oriented interacting cracks.
J. Mech. Phys. Solids 42, 561-584.



L. Shen, S. Yil International Journal of Solids and Structures 38 (2001) 5789-5805 5805

Mori, T., Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta
Metallurgica 21, 571-574.

Mura, T., 1982. Micromechanics of defects in solids. Martinus Nijhoff, The Hague.

Nemat-Nasser, S., Hori, M., 1993. Micromechanics: overall properties of heterogeneous solids, Elsevier, Amsterdam.

Nemat-Nasser, S., Hori, M., 1995. Universal bounds for overall properties of linear and nonlinear heterogeneous solids. J. Engng.
Mater. Tech. 117, 412-432.

Ponte Casta n da, P., Willis, J.R., 1995. The effect of spatial distribution on the effective behavior of composite materials and cracked
media. J. Mech. Phys. Solids 43, 1919-1951.

Rodin, G.J., Hwang, Y.L., 1991. On the problem of linear elasticity for an infinite region containing a finite number of non-intersecting
spherical inhomogeneities. Int. J. Solids Struct. 27, 145-159.

Shen, L., Yi, S., 2000a. Approximate evaluation for effective elastic moduli of cracked solids. Int. J. Fract., in press.

Shen, L., Yi, S., 2000b. New solutions for effective elastic moduli of microcracked solids. Int. J. Solids Struc. 37, 3525-3534.

Tandon, G.P., Weng, G.J., 1984. The effect of aspect ratio of inclusions on the elastic properties of unidirectionally aligned composites.
Polym. Compos. 5, 327-333.

Walsh, J.B., Brace, W.F., England, A.W., 1965. The effect of porosity on compressibility of glass. J. Am. Ceram. Soc. 48, 605.

Weng, G.J., 1984. Some elastic properties of reinforced solids, with special reference to isotropic ones containing spherical inclusions.
Int. J. Engng. Sci. 22, 845-856.

Weng, G.J., 1990. The theoretical connection between Mori-Tanaka’s theory and the Hashin-Shtrikman-Walpole bounds. Int. J.
Engng. Sci. 28, 1111-1120.

Yi, S., Pollock, G., Ahmad, M.F., Hilton, H.H., 1995. Effective transverse Young’s modulus of composites with viscoelastic interphase.
AIAA J. 33, 1548-1550.

Zhan, S., Wang, T., Han, X., 1999. Analysis of two-dimensional finite solids with microcracks. Int. J. Solids Struct. 36, 3735-3753.

Zhao, Y.H., Tandon, G.P., Weng, G.J., 1989. Elastic moduli for a class of porous materials. Acta Mechanica 76, 105-130.

Zimmerman, R.W., 1985. The effect of microcracks on the elastic moduli of brittle materials. J. Mater. Sci. Lett. 4, 1457-1460.

Zimmerman, R.W., 1991. Elastic moduli of a solid containing spherical inclusions. Mech. Mater. 12, 17-24.



